Immunocytochemical identification of cone bipolar cells in the rat retina.
نویسندگان
چکیده
We studied the morphology of bipolar cells in fixed vertical tissue sections of the rat retina by injecting the cells with Lucifer Yellow and neurobiotin. In addition to the rod bipolar cell, nine different putative cone bipolar cell types were distinguished according to the position of their somata in the inner nuclear layer and the branching pattern and stratification level of their axon terminals in the inner plexiform layer. Some of these bipolar cell populations were labeled immunocytochemically in vertical and horizontal sections using antibodies against the calcium-binding protein recoverin, the glutamate transporter GLT-1, the alpha isoform of the protein kinase C, and the Purkinje cell marker L7. These immunocytochemically labeled cell types were characterized in terms of cell density and distribution. We found that rod bipolar cells and GLT-1-positive cone bipolar cells occur at higher densities in a small region located in the upper central retina. This area probably corresponds to the central area, which is the region of highest ganglion cell density. A second peak of rod bipolar cell density in the lower temporal periphery matches the retinal area of binocular overlap. The population densities of the immunocytochemically characterized bipolar cells indicate that at least 50% of all bipolar cells are cone bipolar cells. The variety and total number of cone bipolar cells is surprising because the retina of the rat contains 99% rods. Our findings suggest that cone bipolar cells may play a more important role in the visual system of the rat than previously thought.
منابع مشابه
Electron microscopic analysis of the rod pathway of the rat retina.
Two immunocytochemical markers were used to label the rod pathway of the rat retina. Rod bipolar cells were stained with antibodies against protein kinase C and AII-amacrine cells with antibodies against parvalbumin. The synaptic circuitry of rod bipolars in the inner plexiform layer (IPL) was studied. Rod bipolar cells make approximately 15 ribbon synapses (dyads) in the IPL. Both postsynaptic...
متن کاملIdentification of retinal neurons in a regressive rodent eye (the naked mole-rat).
The retina consists of many parallel circuits designed to maximize the gathering of important information from the environment. Each of these circuits is comprised of a number of different cell types combined in modules that tile the retina. To a subterranean animal, vision is of relatively less importance. Knowledge of how circuits and their elements are altered in response to the subterranean...
متن کاملL-glutamic acid: a neurotransmitter candidate for cone photoreceptors in human and rat retinas.
We have combined immunocytochemical localization of L-aspartate aminotransferase (L-aspartate:2-oxoglutarate aminotransferase, EC 2.6.1.1; glutamic-oxaloacetic transaminase) with autoradiographic localization of high-affinity uptake sites for L-glutamate or L-aspartate to identify the neurotransmitters of mammalian photoreceptors. In both human and rat retinas, high aspartate aminotransferase i...
متن کاملBipolar cells of the ground squirrel retina.
Parallel processing of an image projected onto the retina starts at the first synapse, the cone pedicle, and each cone feeds its light signal into a minimum of eight different bipolar cell types. Hence, the morphological classification of bipolar cells is a prerequisite for analyzing retinal circuitry. Here we applied common bipolar cell markers to the cone-dominated ground squirrel retina, stu...
متن کاملCone bipolar cells in the retina of the microbat Carollia perspicillata.
We studied the retinal cone bipolar cells of Carollia perspicillata, a microchiropteran bat of the phyllostomid family. Microchiroptera are strongly nocturnal, with small eyes and rod-dominated retinae. However, they also possess a significant cone population (2-4%) comprising two spectral types, which are hence the basis for daylight and color vision. We used antibodies against the calcium-bin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of comparative neurology
دوره 361 3 شماره
صفحات -
تاریخ انتشار 1995